ASPPH logo


Member Research & Reports

Member Research & Reports

UTHealth Study Outlines Framework for Identifying Disease Risk in Genome Sequence

Imagine a day when you visit the doctor’s office for your annual physical. Your physician orders routine tests – cholesterol, glucose, and blood count – but they also order a sequence of your genome, all three billion letters of it. Routine genomic testing is not far away, according to researchers at The University of Texas Health Science Center at Houston (UTHealth).

[Photo: Dr. Eric Boerwinkle; right: Dr. Alanna Morrison]

“Whole genome sequencing will become an integral part of routine medicine in the near future,” said Dr. Eric Boerwinkle, dean, M. David Low Chair in Public Health and Kozmetsky Family Chair in Human Genetics at UTHealth School of Public Health.

To help physicians, patients and scientists process this incredible amount of data, Dean Boerwinkle and his team of genetic researchers have developed a framework to understand how whole genome sequence data can be analyzed to identify genetic variations that raise or lower risk of disease. A paper on the framework was published today in the American Journal of Human Genetics.

“The important aspect of this work is that it provides practical steps for scientists and physicians to help analyze whole genome sequences to identify differences that may be increasing disease risk or protecting certain individuals from diseases such as diabetes, cancer and heart disease,” said Dr. Alanna Morrison, professor and chair of the department of epidemiology, human genetics and environmental sciences at the School of Public Health. Dr. Morrison was first author of the study.

In the paper, researchers sequenced the genomes of more than 3,000 people from the Atherosclerosis Risk in Communities (ARIC) study and analyzed multiple traits related to heart and blood disease.

The framework they developed allowed them to examine different functional parts of the genome, including the genes that code for proteins and the portions of the genome that are used to control the expression of genes. “It allowed us to pull apart the different functional components of genome, which we couldn’t access before comprehensively,” said Dr. Morrison.

Through the framework, researchers were able to identify genes for blood lipid levels, white blood cell count and a molecule, troponin, which helps diagnose heart attacks.

The study is an example of the ongoing collaboration between UTHealth and Baylor College of Medicine to identify genetic predispositions to disease. Baylor researchers, led by Dr. Richard Gibbs, director of the Human Genome Sequencing Center, develop genomic sequences and UTHealth researchers, led by Dean Boerwinkle, process and analyze the data.

Dr. Gibbs was a co-investigator on the new study as were UTHealth’s Dr. Bing Yu, Dr. Xiaoming Liu, and Ms. Elena Feofanova.

Read the story here.