ASPPH logo


Member Research & Reports

Member Research & Reports

UCLA Studies Show Menopause, Insomnia Could Increase Women’s Risk for Aging-related Diseases

In a pair of studies published, UCLA researchers report that menopause accelerates biological aging and that insomnia, which often accompanies menopause, also has a clear association with age acceleration.

The dual findings suggest both factors could increase women’s risk for aging-related diseases and earlier death. The two studies, published in separate journals, contribute to increasing evidence of the biological clock’s variability.

The menopause study was published in the Proceedings of the National Academy of Sciences.

“For decades, scientists have disagreed over whether menopause causes aging or aging causes menopause,” said Dr. Steve Horvath, a professor of human genetics and biostatistics in the David Geffen School of Medicine at UCLA and in the UCLA Fielding School of Public Health, and senior author on both studies. “It’s like the chicken or the egg: which came first?  Our study is the first to demonstrate that menopause makes you age faster.”

The sleep study was published in the online issue of the journal Biological Psychiatry.

Not getting restorative sleep may do more than just affect our functioning the next day, said Dr. Judith Carroll, an assistant professor of psychiatry at the UCLA Semel Institute for Neuroscience and Human Behavior and the Cousins Center for Psychoneuroimmunology, and first author of the sleep study.

“It might also influence the rate at which our biological clock ticks,” Dr. Carroll said. “In the women we studied, those reporting symptoms such as restless sleep, waking repeatedly at night, having difficulty falling asleep, and waking too early in the morning tended to be older biologically than women of similar chronological age who reported no symptoms.”

For their findings, both studies used a genetic “biological clock” developed by Horvath, which has become a widely used method for tracking the epigenetic shift in the genome. Epigenetics is the study of changes to DNA packaging that influence which genes are expressed but don’t affect the DNA sequence itself.